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Let l¢ik(x): i, k = I.2,... } be a double orthonormal system on a positive measure
space (X.,T,.u) and laid a double sequence of real numbers for which
L:: I L~ I aik < 00. Then the sum f(x) of the double orthogonal series
L::, LZ"~, aik¢ik(X) exists in the sense of L 2-metric. If, in addition,
L::, LZ"~, aik K2(i, k) < 00 with an appropriate double sequence {K(i. k)} of
positive numbers, then a rate of approximation to f(x) can be concluded by the
rectangular partial sums Smn(x) = L7~ ,LZ ~ J aik ¢ik(X), by the first arithmetic
means of the rectangular partial sums amn(x) = (limn) L7~, LZ=1 S'k(X), by the
first arithmetic means of the square partial sums ar(x) = (Ilr) L~~, Skk(X). etc. The
so-called strong approximation to f(x) by smn(x) is also studied.

c 1984 Academic Press. Inc,

1. INTRODUCTION

Let (X, Y. p) be an arbitrary positive measure space and {¢ ik(X) : i.
k = 1,2.... } an orthonormal system (abbreviated ONS) on X. We will
consider the double orthogonal series

ro ill

2: L aik¢ik(X),
i= I k= J

(1.1 )

where {a ik : i, k = 1, 2,... } is a double sequence of real numbers (coefficients)
for which

CIJ 00

)' '\' 2
L... L.. a ik < 00.
i= I k= I

(1.2)

By the Riesz-Fischer theorem there exists a function f(x) E L 2 =
L 2(X,Y.p) such that the series (1.1) is the Fourier series of f(x) with
respect to the system {¢ik(X)}, In particular, the rectangular partial sums

m n

smn(x) = L L aik¢Jik(x)
i=1 k=1
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(m, n = 1,2,... ),
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108 F. MORICZ

converge to I(x) in the L 2-metric:

as min{m, n} ~ 00.

Here and in the sequel the integrals are taken over the entire space X.
By the extension of the Rademacher-Mensov theorem (see, e.g., [1,9]), if

00 00

L L aidlog(i + lW[Iog(k + IW < 00,
i=1 k=1

(1.3)

then the rectangular partial sums Smn(x) regularly converge a.e., a fortiori
converge in Pringsheim's sense to I(x) a.e., and there exists a function
F(x) E L 2 such that

sup ISmn(x)[ <,F(x), a.e.
m,n;'1

In this paper the logarithms are to the base 2. As for the notion of regular
convergence, see [7 and lOj, and for convergence in Pringsheim's sense see,
e.g., [14, p. 303; or 10j.

Denote by O'mn(x) the first arithmetic means of the rectangular partial
sums:

m n ( i-I) k-l
= L L 1-- (1---) aik¢;k(X)

;=1 k=1 m n

By the extension of the Mensov-Kaczmarz theorem if

(m, n = 1,2,... ).

00 00

L L aik[log log(i + 3W[log log(k + 3W < 00, (1.4)
;=1 k=1

then the (e, 1, I)-means O'mn(x) regularly converge a.e., a fortiori converge in
Pringsheim's sense to I(x) a.e., and there exists a function I(x) E L 2 such
that

sup 100mn(x)[ <. F(x), a.e.
m.n;;> 1

This extension was firstly stated by Fedulov [5]. Unfortunately, his proof
contains two essential defects. Later on, Csernyak [4 j restated this theorem,
but he corrected only the first defect in Fedulov's proof. A complete proof
was given by the present author in [12].



APPROXIMATION THEOREMS 109

We will consider the arithmetic means of the rectangular partial sums with
respect to only m:

and those with respect to only n:

(m, n = 1,2,... ).

These means are called the (C, 1,0) and (C,O, I)-means of series (1.1),
respective!y.

2. MAIN RESULTS: ApPROXIMATION BY RECTANGULAR PARTIAL

SUMS AND THEIR MEANS

First we make the following convention. Given a double sequence lfmn(x)}
of functions in L 2 and a double sequence {A.(m, n)} of positive numbers, we
write

as minim, n} 00

(or maxim, n} 00),

(2.1 )

if
fmn(x) ..... 0, a.e.
A.(m, n)

as minim, n} ..... 00

(or maxim, n} ..... 00),

and, in addition, there exists a function F(x) E L 2 such that

Ifmn(x)1 /' F( )
sup ,( ) ':::: x, a.e.
m.n I\, m, n

Here m ranges over either 0, 1,..., or 1,2,... ; and so does n. Furthermore, we
agree to omit the expression "as minim, n} ..... 00" in (2.1). Also, in Ox

estimates containing both m and n as free parameters we mean that
minim, n} ..... 00, unless it is specified otherwise. A similar meaning is
assigned to the symbol

as m ..... 00,
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where {fm(x)} is a sequence of functions in L Z and {A,(m)} is a sequence of
positive numbers, both defined either for m = 0,1,... , or for m = 1,2,.... The
specification "as m ---+ co", is also omitted if m is the only free parameter
involved.

In Section 1 we have mentioned that conditions (1.3) and (1.4) are
sufficient for the a.e. convergence of smn(x) and amn(x) to f(x), respectively.
Now the main point is that if we require somewhat more than (1.3) and
(1.4), then we can even state an approximation rate for the deviations
smn(x) - f(x) and Gmn(x) - f(x), respectively. A part of the theorems
obtained can be considered the extensions of the two theorems of Tandori
[13 J from single orthogonal series to double ones.

In the sequel the double sequence {A,(m, n)} will be specified as

where {A,I(m): m = I, 2,... } and lA,in): n = 1, 2,... } are nondecreasing
sequences of positive numbers tending to co.

THEOREM 1. If

00 00

L L afk[log{i+ lW[log(k+ lW[max{A,I{i),A,z(k)}J z< co, (2.3)
i=1 k=1

then

We note that the right-hand side of conclusion (2.4) can be equivalently
rewritten as 0x{max{l/A,I(m + 1), 1/A,z(n + I)}}, a.e.

The next theorem provides an approximation rate when a double subse­
quence of the rectangular partial sums is considered, instead of the whole
sequence.

THEOREM 2. Let {ip : P = 1, 2,... } and {kq : q = 1,2,... } be two strictly
increasing sequences ofpositive integers. If

tl ~I C=i~I+1 k=k~I+1 a;k) [log(p + 1)]2[10g(q + lW
X [max {A.I (ip ), A.z(kq )} Jz < co (io = ko = 0), (2.5)

then

a.e. (2.6)
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This theorem is of special interest in the cases where ip = 2P
, kq = q and

ip = 2P , kq = 2q
, respectively. (See Part 1 in Sects. 6 and 7.)

THEOREM 3. If

Al(2m)~CAl(m) with C<2form~mo, (2.7)

A2(2n) = O{A 2(n)}, (2.8)

and

00 00

L L: a;dloglog(i+3)P[log(k+ 1W[max{A 1(i),Aik)}]2< 00, (2.9)
i=l k=l

then

Here and in the sequel, by C we denote positive constants not necessarily
the same at each occurrence. We note that, under (2.7), condition (2.5) in
the special case ip = 2P and kq = q is equivalent to (2.9).

THEOREM 4. If condition (2.7) is satisfied,

with C <2 for n ~ no, (2.11 )

and

00 00

L: L: a;dlog log(i + 3W [log log(k + 3W
i=l k=l

then

(2.12)

_ \ 1 1 I
Gmn(x) - f(x) - Ox I A1(m) + A

2
(n) \' a.e. (2.13 )

It is clear that, under (2.7) and (2.11), condition (2.5) for ip = 2P and
kq = 2q is equivalent to (2.12). If we assume that m and n tend restrictedly
to 00, i.e., there exists a constant 0 ~ 1 such that 0- 1 ~ njm ~ 0, then we can
achieve essentially the same rate of approximation as in (2.13) under a
weaker assumption.



112 F. MORICZ

THEOREM 5. If condition (2.7) is satisfied and

00 00

L L: aik[log log(max{ i, k} + 3)r Ai(max{i, k}) < <x), (2.14)
i=' k='

then for every e? 1,

_ \ 1 I
max Il1mn(X)-f(x)l-ox/1,(m)I' a.e. (2.15)n:9-'<;nlm<; 9 I\,

It is a simple observation that

1 m n

I1mn (X) - f(x) = - L: L [Sik(X) - f(x)].
mn i=' k='

The next theorem reveals that the average of the deviations Sik(X) - f(x) is of
0x{1/A.(m)} in (2.15), not because of the cancellation of positive and
negative terms, but because the pairs (i, k) for which ISik(X) - f(x)1 is not
small are sparse, at least in the case where the ratio k/i is bounded both from
below and from above.

THEOREM 6. If conditions (2.7) and (2.14) are satisfied and {m/A,(m)}
is nondecreasing, then for every e? 1,

\ 1 m Iii /'/
2

\ 1 I
Im 2 ~, k=~-'i [Sik(X) - f(xW \ = Ox IA,(m) \' a.e. (2.16)

By r.Z~9-1i we mean that the summation is extended over those integers k
for which e-'i <, k <, ei.

Remark 1. Condition (2.7) is satisfied, e.g., if A, (m) = ma with
0< a < 1 or A.(m) = ma [log(m + 1)]6 with 0 <, a < 1 and fJ> O.

Remark 2. Following Alexits [3], the property expressed in (2.16) can
be called a strong approximation to f(x) by the rectangular partial sums. In
particular, via the Cauchy inequality (2.16) implies

1 m 9~ \ 1 (
m2 t-, k=~-'i ISik(X) - f(x)1 = Ox I A,(m) \' a.e.

Remark 3. By slightly modifying the proof of Theorem 6, one can
conclude the following somewhat stronger statement: If condition (2.14) is
satisfied,

with C <-Ii for m? mo' (2.17)
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and {mjAi(m)f is nondecreasing, then for every e~ 1,

\ 1 m 1 IJi 2 11
/
2

\ 1 I
Im ~I i k=~-li [Sik(X) - f(x)] \ = Ox I A1(m) \' a.e.

3. ApPROXIMATION BY SPECIAL PARTIAL SUMS AND THEIR MEANS

113

We fix a single sequence Q = {Qr: r = 1,2,... } of finite sets in IN 2 = {(i, k) :
i, k = 1,2,... } such that

The sums

and

Sr(Q; x) = I aik~ik(X)
(i,k)EQ,

(r= 1,2,... ),

can be also regarded as a certain kind of partial sums of series (1.1). The
following two special cases are well known:

Qr = {(i, k) E 1N 2
: i, k = 1,2,..., r}

provides the square partial sums, while

(r = 1,2,... ),

provides the spherical partial sums of series (1.1).
Denote by ar(Q;x) the first arithmetic means of the sr(Q;x):

(r = 1,2,... ; Qo = 0).

The one-parameter versions of Theorems 1,2,3, and 6 read as follow. In
these theorems {AI(r): r= 1, 2,... } is a nondecreasing sequence of positive
numbers tending to 00.

THEOREM 1'. If
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then
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For the square partial sums, (3.1) is equivalent to the condition

00 00

2.: 2.: a;k[log(max{i, k} + 1)P Ai(max{i, k}) < 00.
1=1 k=1

THEOREM 2'. Let {rp : p = 1,2,... } be a strictly increasing sequence of
positive integers. If

f ( 2.: a;k) [log(p + 1)P Ai(rp ) < 00
p=' (i.k)EQrpVlrp_l

then

(ro= 0, Qo = 0),

(3.2)

In the special case where rp = 2P and

(3.2) goes over to the condition

f: (. 2.: a;k) [log log(r + 3)P Ai(r) < 00. (3.3)
r=1 1l.k)EQr\Qr_l

Specialized further, in the case of square partial sums (3.3) is equivalent to
condition (2.14).

THEOREM 4'. If conditions (2.7) and (3.3) are satisfied, then

THEOREM 6'. If conditions (2.17) and (3.3) are satisfied and {rIAi(r)} is
nondecreasing, then

\ 1 r • 2/
1
/2 _ \ 1 I

/7 p2;, [sp(Q,x)-f(x)] \ -ox /A1(r)\' a.e.

The last theorem expresses a strong approximation tof(x) by the sp(Q;x),
in a particular case by the square partial sums.
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4. AUXILIARY RESULTS ON NUMERICAL SEQUENCES
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Given a double sequence {A(m, n): m, n = 1,2,... } of numbers, we write

.1 lO A(m, n) = A(m, n) - A(m + 1, n),

.1oIA(m,n)=A(m,n)~A(m,n+ 1),

.1 I1 A(m, n) = A(m, n) - A(m + 1, n) - A(m, n + 1) +A(m + 1, n + I).

We say that {A(m,n)} is nonincreasing if both .1 lO A(m,n»O and
.1 0I A(m,n»O, while {A(m,n)} is nondecreasing ifboth.1lOA(m,n)~Oand
.1 0I A(m, n) ~ 0 for all m and n. Furthermore, {A(m, n)} is said to be convex
if .1 II A(m,n»O for all m and n.

LEMMA 1. If {AI(m): m=I,2,.. } and {AI(n): n=I,2,... } are
nondecreasing sequences of positive numbers and {A(m, n)} is defined by
(2.2), then {l/A(m, n)} is nonincreasing and convex.

Proof It is clear that {1/A(m, n)} is nonincreasing. We will prove that it
is convex. To this effect, let a pair (m, n) of positive integers be given.
Without loss of generality, we may assume AI(m) >A2(n). Then, by
definition A(m, n) = AI(m) and A(m + 1, n) = AI(m + 1).

We distinguish two cases: either

(a) A(m,n+ 1)=AI(m»A I(n+ 1) or

(b) A(m,n+ 1)=A 2(n+ 1»AI(m).

In case (a), by definition A.(m + 1, n + 1) = AI(m + 1), consequently

.1 11 A(m, n) = O.

In case (b), there are two subcases: either

(b l ) A(m + 1, n + 1) = A1(m + 1) >A2(n + 1) or

(b2 ) A(m+ l,n+ 1)=A2(n+ 1»AI(m+ 1).

In case (b I)' by definition and property (b),

while in case (b2 ), by the monotony of {AI(m)},
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LEMMA 2. If {A(m, n)} is a nondecreasing sequence of positive numbers
for which {I/A(m, n)} is convex and the condition

00 00

L I a7k[log(i + lW[log(k + 1)p A2(i, k) < 00 (4.1)
;=1 k=1

(4.2)as maxim, n} ---. 00,

is satisfied, then there exists a nondecreasing sequence {A *(m, n)} ofpositive
numbers for which {I 1,1, *(m, n)} is convex,

A(m,n) ---.0
A*(m,n)

and
00 00

L I a7k[log(i+ 1)P[log(k+ lW[A*(i,kW < 00. (4.3)
;=1 k= I

Proof By (4.1), there exists a strictly increasing sequence imp} of
positive numbers such that

00 00 1
L L a7k[1og(i + 1)P[log(k + lW A2(i, k) ~ 3
;=1 k=1 P

max(i,k) >mp

(p = 1,2,... ).

Define

A*(i, k) = A(i, k)

= pA(i, k)

for i,k= 1,2,... , m2 - 1;

for mp~max{i,k}<mp+I (p = 2, 3,... ).

The fulfillment of (4.2) and (4.3) are obvious. To prove that {I/A *(i, k)} is
convex, we distinguish four cases.

Case (a). max ii, k} <mi' Then, by assumption,

1 1
Ll il A*(i,k) =Ll11A(i,k)~O.

Case (b). mp~ max{i, k} <mp+1- 1 for some p ~ 1. Then, by
definition,

Ll il A*(i, k)

Case (c). max{i,k}=mp+l -l, but min{i,k}<mp+I -1. If i=
mp +1- 1, say, then

1 1 1 1
Ll 11 A. *(i, k) = P Ll ol A.(i, k) - p + 1 Ll ol A(i + 1, k)

_ ~ _1_ 1 LI 1 ~ O.
- P Ll 11 A(i, k) + p(p + 1) 01 A(i + 1, k) <'"
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Case (d). i = k = mp +1- 1. Then

1 1 1 (1 1 1)
,111 A*(i, k) = PAU, k) - p + 1 AU+ 1, k) + AU, k+ 1) - AU+ 1, k+ 1)

1 1 1
=--,111--+ ;)0. I

p + 1 AU, k) pep + 1) AU, k)

LEMMA 3. If {A1(m)l is a nondecreasing sequence of positive numbers
for which condition (2.7) is satisfied, then

(i) m
A1(m) -t 00,

as m -t 00, (4.4 )

Proof Here we drop the one subscript on AI (m).

(i) By (2.7),

(4.5)

(4.6)

(4.7)

(4.8)

whence

(p = 0,1,... ; C <2),

as p -t 00.

In the case where 2P
-

1mo <m ~ 2Pmo, we suffice to take into account the
inequality

m 2P - 1m

A(m);) A(2 p mo)'

(ii) Let 2m
,;) mo' Then for every m andp such that m1~ m ~ p,



118

and by (2.7),

F. MORICZ

(iii) Let 2P
:::;;; i < 2P + 1

• Then by (ii) and (2.7),

(iv) Let 2 m
, >mo' Then for every p and m, m1 :::;;; p:::;;; m,

Consequently, by (2.7),

00 ),,2(2m) ),,2(2P) 00 (C2 )m-p _ 4 ),,2(2P)
L 22m :::;;; 22P L 4 - 4 _ C2 22p •

m=p m=p

5. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. First we apply Lemmas 1 and 2, then the extended
Rademacher-Mensov theorem to the double orthogonal series

00 00

.L .L aik )" *(i, k) ?ik(X),
i=1 k=l

resulting in a function F(x) E L 2 such that

(m, n = 1,2,...). (5.1)
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We represent the difference f(x) - Smn(x) figuring in (2.4) as follows

119

f(x) - smn(x) = )tl k=~+1+ i=~+1tl + i=~+1
=A~~(x) +A~~(x) +A~~(x), say.

00 I
k=~+ 1 \ aik~ik(X)

(5.2)

Applying a double Abel transformation (see [6 or 11)) yields

n 00 1
A~~(x)= (;1 k=~+1 aikA*(i,k)~ik(X) A*(i,k)

m-I 00 1 00 1

= (;1 k~+ 1 s.t(x)A II A*(i, k) + k=~+ 1 S;k(X)LJ OI A*(m, k)

m~ 1 1 * ( )- t;.1 Si~(X)LJlO A*(i,n+ 1) A*(~,nnx+ 1)"

On account of (5.1) and the convexity of PIA *(i, k)},

(I) \ (1 1) 1
IAmn(x)I~F(x) I A*(I,n+ 1) - A*(m,n+ 1) + A*(m,n+ 1)

( 1 1) 1 I
+ A*(I,n+ 1) - A*(m,n+ 1) + A*(m,n+ 1)\

2F(x)
A*(1, n + 1)' a.e., (5.3)

independently of m.
Similarly, independently of n,

I
(2) 2F(x)

Amn(x)1 ~ A*(m + 1, 1) .

Finally, applying again a double Abel transformation,

(5.4 )

00 00 1
A m(3n)(x) = '" '" *( )LJ

i=-;;+ 1 k=~+ 1 Sik X II A*(i, k)

00 1
- .L Si~(X)LJlO A*(i n + 1)l=m+1 ,

whence

00 1

k=~+ 1 S;k(X)LJ OI A*(m + 1, k)

s;n(x)
A*(m+ l,n+ 1)'

I (3) I 2F(x)
Amn(x) ~ A*(m + 1, n + 1)' a.e. (5.5)
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Putting (5.2)-(5.5) together, we find

\ 1 I
If(x) - smn(x)1 ~ 4F(x) I A*(m + 1, 1) + A*(1, n + 1)\' a.e.

By (2.2) and (4.2), this implies the wanted inequality (2.4). I

Proof of Theorem 2. We set

and

l ip k q !I/Z

a* = '\' '\' al~kpq "-- "--"
i=ip_,+1 k=kq_,+1

(p, q = 1,2,... ; io = k o= 0)

It is obvious that {~:q(x): p, q = 1,2,... } is an ONS and by (2.5),

00 00

.L .L [a:qf[log(p+ 1)P[log(q+ 1)p[max{A I (ip),Az(kq)}j2 < 00.
p=1 q=1

Thus, the application of Theorem 1 yields

p q

Sip,kq(X) ~ f(x) = .L I a~~~(x) ~ f(x)
r= I t= I

This is (2.6) to be proved. I

6. PROOF OF THEOREM 3

Let 2P < m ~ 2P + I with an integer p ~ O. (For m = 1 we have
Tln(X) = Sln(X).) Then clearly

Tmn(X) ~ f(x) = [szp,n(x) - f(x)]

+ [T2P•n(X) - szp,n(x)] + [Tmn(X) ~ Tzp,n(X)], (6.1)

Accordingly, the proof of (2.10) is split into three parts.
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(6.2)

Part 1. By Theorem 2 (in the special case ip = 2P and k q = q),
condition (2.9) implies

S2P,n(X) - f(x) = Ox ) Al (~P) + A2~n) ~, a.e.

Part 2. We will prove that, under the condition

00 00

I I aidlog(k + lW Ai(i) < 00,
i=1 k=1

we have

as p -t 00.

(6.3 )

(6.4 )

The proof of (6.4) is done in two steps, while using the representation

(p, n = 1,2,... ). (6.5)

Step 1. First we treat the special case where n = 2q (q = 0, 1,... ) and
prove

~~~ I
S2P,2q(X) - T2P,2Q(x)1 = Ox 1AI(~P) !, a.e.

To this end, by the Cauchy inequality and (6.5),

as p -t 00. (6,6)

q I 2P 2' . 1 I
I
S2P,2Q(X) - T2P,2q(X)1 ~ r~o i~2 k=2~'+1 I ~P aik~ik(X)

\ q 2[2
P

2~ i-I J21
1
/
2

\ f 1 1
1
/

2

~ Ir~o (r + 1) i~2 k=2~'+ I 2P aik~ik(X) \ I r":"O (r + 1)2 \ '

with the agreement that by 2 -I we mean °in this paper. Taking into account
that the last factor on the right does not exceed {n2/6} 112, we can conclude
that

AI (2 P
) [ sup IS2P,N(X) - T 2P,2Q(X)IJ

q;>O n \00 l2P 2' i-I 12 1 112

~ V6 1r~o (r + 1)2 Ai(2
P

) i~2 k=~l+ I 2Paik~ik(X)J \ .

Setting
(6.7)

640/42/2-2
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we have to show that F I (x) E L 2. Indeed, by (4.7) and (6.3),

00 00 2P 2 r (i _ 1) 2 2fFi(x) dp(x) = f;1 ~o (r + 1)2 ;"i(2
P

) ~2 k=~l+ I 22p a ik

00 00 2P (i _ 1)2
~ 2..: 2..: 2..: 22p aidlog 4kj2 ;"i(2P

)
p=1 k=1 i=2

00 00 ;"i(2P )

= 2..: 2..: (i - 1)2 aidlog 4k j2 2..: 22p
i=2 k= I p:2P;;;' i

00 00

= O{1} L L aik[log 4kj2 ;"i(i) < 00.
i=2 k= I

Hence B. Levi's theorem implies (6.6) via (6.7).

Step 2. Let 2q <n ~ 2q + I with some q ~ 1. Then by (6.5),

S2P.n(x) - T2P•n(X) = [S2P,2q(X) - T2P,2q(X)]

2p n i-I
+ 2..: L Vaik tPik(X),

i=2 k=2Q+ I

whence

(6.8)

where

We are going to prove that, under condition (6.3),

as max{p, q} --+ 00. (6.10)

To this effect, we apply the Rademacher-Mensov inequality (see, e.g., [2,
p. 79; or 8, Theorem 3]) to obtain

f [M~~(xW dp(x) ~ [log 2Q+1]2 £ 2£[ (i ;2~)2 aik'
i=2 k=2Q+1

Setting
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we can obtain, in the same manner as in (6.8),
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Now (6.10) follows from B. Levi's theorem. Combining (6.6), (6.9), and
(6.10), we get (6.4).

Part 3. We will prove that, under condition (6.3),

sup max Irmn(X)-r2P.n(X)I=OX\A(~p)l,a.e., asp-4oo. (6.11)
n;;>1 2P<m<;;2p+1 I 1 \

Taking into account that

2P+ I

max jrmn(x) - r 2P,n(x)1 ~ L Irmn(x) - rm-1,n(x)1 =A~;;(x),
2P<m<;;2P+ 1 m=2P+ 1

(6.12)

we will prove somewhat more, namely,

as p -400. (6.13 )

We carry out the proof again in two steps, using the representation

(m = 2, 3'00'; n = 1,2,... ).

(6.14)

Step 3. First we verify (6.13) in the special case n = 2Q, i.e.,

as p -400. (6.15)

To achieve this goal, we use (6.14) and the Cauchy inequality:
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This inequality suggests defining

F 3(x) = 1~2 r~o mer + 1)2 Ai(m)

X rf: £ i-I aik¢ik(X)J 21
1
/2.

L=2 k=2r-l+1 m(m -1) \

By (4.8) and (6.3),

f F~(x)d.u(x)= ~ ~m(r+l)2Ai(m)~ ~~ (i-1)2 a;k
:-::2 f;o i~2 k=f.::"+1 m2(m - 1)2

OC) OC) m 2' ·2

~ L L L L ~a;dlog 4k]2 Ai(m)
m=2 r=O i=2 k~2'-'+1 m

OC) OC) m i2
= L L L-3 a;dlog 4kj2Ai(m)

m=2 k=1 i=2 m
00 00 00 A2( )

= L L i 2a;dlog 4k]2 L~
i=2 k=1 m=i m

00 00

= 0/1} L L aik[log 4k]Z ,1,i(i) < 00.
;=2 k=1

Hence B. Levi's theorem implies (6.15) through (6.16).

Step 4. We proceed similarly to Step 2. By (6.14),

(6.17)

2P+l

max A(4)(X)~A(4~q(X)+ L M(2)(x), (6.18)
2q<n<;;2q+1 pn P. m=2P+I mq

where

1

m n i-I 1
M(2) X - max a x

mq( ) - 2q<n-'2q+J ~ L m(m _ 1) ik¢ik( )
.. .=2 k=2q+ 1

(m = 2, 3,... ; q = 1,2,... ).
Applying the Cauchy inequality:

then the Rademacher-Mensov inequality separately for each fixed m:

f [M~~(xWdp(x)~ [log2Q+I]Z £~' y_1)2 2 a;k
i=2 k=20+1 m (m - 1)

(6.19)
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Setting

we can get, in the same way as in (6.17),

CfJ CfJ m 20+ 1 ·z

fF;(x)d.u(X):::;;];2:;1 ~2k=~+1 ~3 aik{log2k]2 Ai(m)

CfJ co m i2
= L L L -3 aik[log 2k]2 Ai(m) < co.

m=2 k=3 i=2 m

Hence B. Levi's theorem implies, through (6.19),
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ZP+l 1
sup L M~~(x) = Ox \ A (2 P ) I, a.e.
q;;'O m=2P+I I 1 \

as p --+ co. (6.20)

Putting (6.15), (6.18), and (6.20) together, we find (6.13) to be proved.
Finally, (2.10) follows from (6.1), (6.2), (6.4), and (6.11). I

7. PROOF OF THEOREM 4

We start with the identity

Omn(X) - f(x) = [S2P.2q{X) - f(x)] + [02P.2q{X) - S2P,2q{X)]

+ [om,zq(x) - 02P,2O(x)] + [02P,n(X) - 02P,2q{X)]

+ [omn(x) - 0m,zq{x) - 02P,n(x) +02P,zq{x)], (7.1)

where 2P :::;; m :::;; 2P + 1 and 2q
:::;; n :::;; 2q + I, P and q being nonnegative integers.

Accordingly, the proof is accomplished in five parts.

Part 1. In the special case ip = 2P and k q = 2q Theorem 2 states that,
under condition (2.12),

(7.2)

Part 2. We prove that
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To this goal, we use the representation

S2P,20(X) - G2P,2Q(X)

2P 2Q (i - 1 k - 1 U- 1)(k - 1) )
= (;1 (;1 2P +~ - 2P2Q aik~ik(X)

= [S2P,2ix ) - r~~2ix)] + [SzP,2Q(X) - r~~2ix)]

2P 20 (i-l)(k-l)
- L L 2P 2Q aik~ik(X),

i=2 k=2

Thus, the proof of (7.2) is divided into three steps.

Step 1. First we are going to prove that if

00 00

L L a;k[log log(k + 3)p AiU) < ro,
i=l k=1

then

(7.4)

(7,5)

as p ~ roo (7.6)

This statement is a simple consequence of (6.4). In fact, setting

(r = 0, 1,... ),

and

if air *- 0,

if air = 0;

we obtain a new ONS {iir(X) : i = 1,2,... ; r = 0, I,... }. By (7.5),

00 00

L L a;r[log(r + 2)P AiU) < ro,
i=l r=O

Le" condition (6.3) is fulfilled. Thus, by (6.4),

:~~ IS2P,Q(X) - r~~~q(x)1 = Ox IA}2P) (, a.e. as p ~ cx), (7.7)
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where

That is, (7.7) is equivalent to (7.6) to be proved.

Step 2. In the same way one can deduce that if

00 00

L L a~dlog log(i +3)j2 A~(k) < 00,
i=\ k=\

then
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(7.8)

as q --+ 00. (7.9)

Step 3. We show that under the condition

00 00

L L a~k max{Ai(i), A~(k)} < 00,
i=\ k= 1

we have

(5) _ 2P 2. (i-l)(k-l)
A pq (x) - L L 2P2q aik~ik(X)

i=2 k=2

(7.10)

_ \ . \ 1 _1_11
-ox (mIn I A\(2 P)' A

2
(2 q ) \ \'

a.e. as max{p, q} --+ 00. (7.11)

Indeed, setting

we get by (4.7),

00 00

= L L (i - 1)2(k _1)2 a;k L
i=2 k=2 p:2P>i

00 00

= O{1} L L a;kAi(i) < 00.
i=2 k=2
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Hence B. Levi's theorem implies
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as max{p, q} ---+ co,A (5)( ) _ \ 1 I
pq x - Ox I A

1
(2 P ) \' a.e.

which is the first half of statement (7.11). The second half can be proved
analogously.

Collecting (7.6), (7.9), and (7.11) we find (7.3).

Part 3. We will prove that under condition (7.5)

We even prove a bit more; under (7.5),

a.e. as p---+ co. (7.12)

2P+l I
sup L !O"m,zix ) - O"m_l.zq(X)! = Ox \ A (2 P ) I, a.e. as p ---+ co (7.13)
q;;'O m=ZP+l I 1 \

(cf. (6.12) and (6.13». Using the representation

m, n i-I k-I
O"mnCX)-O"m_l.n(X) = L I (-I) (1---) aik¢ik(X)

i=2 k=l m m n
(m=2,3, ... ;n= 1,2,... ), (7.14)

and taking (6.5) into account, we can write

O"m,z.(X) - O"m-l,z.(X) = [rm.z.(x) - rm-1,Zq(x)]

m zq (i - I )(k - I)
- ~z 'j;z m(m - 1)2q aik¢ik(X),

Hence

ZP+l
L 100m.zq(x) - O"m-l.zix)1 ~A~~i.(x) +A~i(x), (7.15)

m=2P+ 1

where A~~(x) was defined in (6.12) (now n = 2q
) and

Zp+l 1
m zq (i-l)(k-l) I

A~i(x) = m=~+l {;z (;z m(m - 1)2q aik¢ik(X) .

We divide the proof of (7.13) into two steps.
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Step 4. Using the same "contraction" technique as in Step 1 above,
from estimate (6.13) one can deduce that, under condition (7.5),

as p -> 00. (7.16)

Step 5. We will check that, under condition (7.10),

as max{p,q}-> 00. (7.17)

In fact, by the Cauchy inequality,

Setting

F
6
(x) = \ ~ V mA 2(m) [~' \~ (i-l)(k-l) ~ ( )J2/112

I~2:;-:1 I i'";;;'2:-::2 m(m _ 1)2q aik
ik x \ '

by (4.8) and (7.10),

00 00

= O{ I} L L a;kAi(i) < 00.
i=2 k=2

Hence B. Levi's theorem implies the one half of (7.17). The other half can be
proved similarly. Combining (7.15}-(7.17) yields (7.13).

Part 4. The companion statement to (7.12) reads as follows: Under
condition (7.8),

sup max I02P.n(X)-02P.2oCX)I=oxl,(lq)l,a.e. as q->oo. (7.18)
p;;'O 2q<n<;;2q+! 11\2 2 \
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Part 5. Finally, we prove that, under condition (7.8),

A~~)(x) = max max lamn(x) - am 2Q(X) - au n(x) +a2P 2.(x)12p<;;m<;;2P+ 1 2Q<;;n<;;2Q+1 . . .

(7.19)

The proof is based on the following estimation:

2P+l 2q+l

A~i(x)~ L L lamn(x) - am_l.n(x) - am,n-l(X) +am-1,n-l(X)1
m=2P+ I n=2Q+ I

+am_I,n_I(XW}1/2 (7.20)

1

2P+1 20+
1 [m n (i-I)(k-I) 2 1/2

= L L mn L L aik¢ik(X),
m=2P+l n=2Q+l i=2 k=2 m(m-I)n(n-I) J !

Now we define

J

. 00 00 [00 n (i - 1)(k - I) J2 1/2
F7(x) = L L mnAi(m) ~ L ( _ I) ( _ I) aik¢ik(X) i .

m=2 n=2 1=2 k=2 m m n n ,

A simple computation gives, by (4.8) and (7.10),

2 00, 00, 2 m n (i-I)2(k-l)2 2fF,(x) dp.(x) = ];2 ];2 mnA1(m) ;~2 {;2 m2(m _ 1)2 n2(n _ 1)2 aik

_ ~ ~ .2k2 2 ~ Ai(m) ~ ~
- L.. L.. I aik L.. 3 L.. 3

;=2 k=2 m=i m n=k n
00 00

= O{l} I L a;kAi(i) < 00.
i=2 k=2

It remains to apply B. Levi's theorem in order to obtain the part
0x{l/A 1(2P )} in (7.19). The proof of the part 0x{l/A 2(2Q

)} is quite similar.
Collecting (7.1}-(7.3), (7.12), (7.18), and (7.19) we obtain (2.13) to be

proved. I
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8. PROOFS OF THE THEOREMS IN SECTION 3

We set

131

!
1/2

- '" 2ar = L... a ik
1(i.k)EQr\Qr-l

and

= ¢ik(X) with some (i, k) E Qr\Qr-1

(r = 1, 2,... ; Qo = 0),

if iir = O.

It is clear that {ir(x): r= I, 2,... } is an ONS and conditions (3.1}-(3.3) turn
into the following ones:

00

L ii~(log(r + 1)]2 Ai(r) < ro,
r=1

and

00

L ii~(log log(r + 3W Ai(r) < ro.
r= I

Thus, we can apply the two theorems of Tandori [13] in order to conclude
Theorems I' and 4'. Theorem 2' can be deduced from Theorem I' in the
same way as Theorem 2 is deduced from Theorem I in Section 5. It remains
to prove Theorem 6'.

To this effect, let {'IIi(X): i = I, 2,... } be an (ordinary) 0 NS and consider
the single orthogonal series

L b;'IIi(X),
;=1

(8.1 )

where {b;: i = 1,2,... } is a sequence of real numbers with L bf < ro. By the
Riesz-Fischer theorem there exists a function g(x) E £2 such that the partial
sums

m

Sm(X) = L b;'II;(x)
;=1

(m = 1,2,... ),
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of series (8.1) converge to g(x) in e-metric:

as m~ 00.

Denote by Gm(x) the first arithmetic means of the partial sums:

(m = 1,2,... ).

The following theorem seems to be new.

THEOREM 7. If conditions (2.17) and

OCJ

L b;[log log(i + 3)jl Ai(i) < 00
i=1

are satisfied and {mjAi(m)} is nondecreasing, then

\ 1 m 11
/
2

\ 1 1
1m ~1 [Si(X) - g(xW \ = Ox /Al(m) \' a.e.

(8.2)

(8.3)

After these preliminaries, Theorem 6' can be deduced from Theorem 7 in
the same manner as Theorems I' and 4' are deduced from the corresponding
theorems of [13).

Proof of Theorem 7. We begin with the obvious inequality

(8.4)

On the one hand, by (8.2) we can apply [13, Theorem 2) resulting in

(8.5)

We note that in the Tandori theorem in question a stronger requirement is
imposed on the sequence {A 1(m)} than (2.17), namely

(m = 1,2,... ).

But an analysis of his proof reveals that even condition (2.7) is actually
enough.
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Due to (2.17), {A.i(m)} satisfies condition (2.7). By (4.4), (4.6), and (8.5),
one can conclude that

On the other hand, letting

\ 00 A2( ) 1/2

Fs(X)=I:~1 Im

m
[Sm(X)-Om(XW~ ,

the termwise integration gives

fF~(x) dp(x) = ~I Ai~m) ;t2 (i :2lr bJ

00 00 A2(m) 00

= Y (i - 1)2bJ )' _I-3-= O{l} \' bJAi(i) < ro,
;=2 m=; m ;=2

where we used (4.8) and (8.2). By B. Levi's theorem F s(x)EL 2
• We can

apply the well known Kronecker lemma (see, e.g., [2, p. 72]) since
{mjAi(m)} is nondecreasing by assumption and tends to ro by (4.4). As a
result we get

1
1 "'., 2/

1
/

2
1 1 Im;:1 [s;(x) - o;(x)] \ = Ox AI(m) \' a.e.

To sum up, (8.4), (8.6), and (8.7) result in (8.3) to be proved. I

9. PROOFS OF THEOREMS 5 AND 6

(8.7)

Proof of Theorem 5. It resembles the proof of Theorem 4. Therefore we
only sketch the proof. We again use identity (7.1), this time with p = q.

Part 1. Theorem 2 I in the special case Qr = {(i. k) E IN 2 :

i, k = 1,2,... , r} (square partial sums) and rp = 2P states that, under condition
(2.14),

Part 2. If

00 00

2.:: 2.:: afkAi(max{i, k}) < ro,
;=1 k=1

(9.1)

(9.2)
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then

Indeed, setting
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(9.3)

\ OC! 1/2

F9(x) = Ip~O 2i(2 P)[S2P.2P(X) - 0'2P.2 P(X)F[ ,

by (7.4), (4.7), and (9.2) one can show that F 9(x) E L 2
• Applying B. Levi's

theorem yields (9.3).

Part 3. If (9.2) is satisfied, then for every 8 ~ 1

M~3~(X)= max lam2p(x)-a2P2P(x)1
• (J-12p<;;m<,fJ2p+J' ,

It is clear that

= M(4) (x) +M(S) (x)
p,(J P.(J'

say. For instance, we treat M~:~(x) in detail. By the Cauchy inequality

(J2P+1

M~:~(x) < L lam.2Ax) - am_I.2P(X)!
m=2P+I

)

(J2p+l 11/2

< (28 - 1) m=~+1 [am.2p(x) - am - I ,2p(X)P \ '

Using (7.14), (4.7), and (9.2) one can check that

whence B. Levi's theorem implies

(9.4)

(9.5)
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The same estimate can be deduced for M~~~(x). This completes the proof
of (9.4).

Part 4. The symmetric counterpart of (9.4) reads as follows: If (9.2)
is satisfied, then for every e? 1

Part 5. Under (9.2), for every e? 1,

(9.7)

In fact, it is enough to estimate

(cf. (9.5». Introducing

and using an estimate similar to (7.20) (this time p = q), one can conclude
Fll(x) E L 2

. and (9.7). Putting (9.1), (9.3), (9.4), (9.6), and (9.7) together,
we find (2.15). I

Proof of Theorem 6. It will be done in two parts.

Part 1. Due to the monotony of {m/A 1(m)} and (4.6),

(m = 1,2,... ).

Consequently, by Theorem 5,

\ 1 m 8i /1/2

I m2 (;1 k=~-li [aik(x) - f(x)f \

(9.8)
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Part 2. We will prove that if (9.2) IS satisfied and {mjA1(m)} IS

nondecreasing, then for every e~ 1,

\ 1 m fii 2/
1
/2 _ \ 1 I

I m2 i!;] k=~-li [Sik(X)-Oik(X)) \ -ox I A](m)\' a.e. (9.9)

This can be verified by showing

To this end, one has to use a representation analogous to (7.4), then (4.8)
and (9.2).

So, the series

fim

)'
n=fi-1m

converges a.e. One can apply the Kronecker lemma, since mjA](m)-+ 00 as
m -+ 00 in a nondecreasing way, and obtain (9.9). Combining (9.8) and
(9.9), we get (2.16) to be proved. I

REFERENCES

I. P. R. AGNEW, On double orthogonal series, Proc. London Math. Soc. (2) 33 (1932),
420-434.

2. G. ALEXITS, "Convergence Problems of Orthogonal Series," Hungar. Acad. Sci.,
Budapest, 1961.

3. G. ALEXITs, Uber die Approximation im starken Sinne, Approximationstheorie, in
"Proceedings, Conf. Oberwolfach, 1963," pp. 89-95, Birkhauser, Basel, 1964.

4. L. CSERNYAK, Bemerkung zur Arbeit von V. S. Fedulov "Uber die Summierbarkeit rer
doppelten Orthogonalreihen," Publ. Math. Debrecen 15 (1968), 95-98.

5. V. S. FEDULOV, On (C, 1, 1)-summability of a double orthogonal series, Ukrain. Mat. Zh.
7 (1955), 433-442. [Russian1

6. G. H. HARDY, On the convergence of certain multiple series, Proc. London Math. Soc.
(2) 1 (1903-1904), 124-128.

7. G. H. HARDY, On the convergence of certain multiple series, Proc. Cambridge Phi/os.
Soc. 19 (1916-1919), 86-95.

8. F. MORICZ, Moment inequalities and the strong laws of large numbers, Z. Wahrsch. verw.
Gebiete 35 (1976), 299-314.

9. F. MORICZ, Multiparameter strong laws of large numbers. I. Second order moment
restrictions, Acta Sci. Math. (Szeged) 40 (1978), 143-156.

10. F. MORICZ, On the convergence in a restricted sense of multiple series, Anal. Math. 5
(1979), 135-147.



APPROXIMATION THEOREMS 137

11. F. MORICZ, The Kronecker lemmas for multiple series and some applications, Acta Math.
Acad. Sci. Hungar. 37 (1981), 39-50.

12. F. MORICZ, On the a.e. convergence of the arithmetic means of double orthogonal series,
Trans. Amer. Math. Soc., in press.

13. K. TANDORI, Uber die orthogona1en Funktionen. VII. Approximationssatze, Acta Sci.
Math. (Szeged) 20 (1959), 19-24.

14. A. ZYGMUND, "Trigonometric Series, II," Cambridge Univ. Press, London, 1959.

640/42/23


